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We present the results of theoretical and experimental investigations of the effect of additive noise on
vibrational resonance in a bistable system driven by two periodic forces with very different frequencies. The
phenomenon shows up as a parametric amplification of the low-frequency signal depending on the amplitude
of high-frequency modulation. A scaling law for noise-induced decreasing of the gain factor, found theoreti-
cally, is compared with the experimental results obtained in a bistable vertical cavity surface emitting laser.
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Recently, considerable attention has been devoted both
theoretically and experimentally to the phenomenon of vibra-
tional resonance(VR), which appears in bistable systems
being excited by two periodic signals with very different
frequencies[1–8]. A distinctive feature of VR is that the
response at the low frequency(LF) signal passes through a
maximum depending on the amplitude of an additional high-
frequency(HF) modulation. Such a method of the excitation
has been proposed in the context of studying stochastic reso-
nance(SR) in bistable systems where the added noise is re-
placed by the HF modulation[1]. An evidence of VR was
demonstrated in analog electric circuits utilized to model
noise-induced structures[3], excitable systems[4] and an
overdamped bistable oscillator[5]. A theoretical explanation
of the phenomenon VR was presented in[5,7] where it has
been shown that VR takes place in the vicinity of the bifur-
cation corresponding to transition from bistability to mono-
stability induced by the HF modulation. Recently, the experi-
mental evidence of VR has been given in a vertical cavity
surface emitting laser(VCSEL) operating in the regime of
polarization bistability for both quasisymmetric and strongly
asymmetric quasipotentials[6]. Besides, the possibility to
make use of VR for low-level signal detection has been also
demonstrated. It has been shown that the gain factor can
reach very high values(about 300) for weak LF signals
which significantly exceeds(by about 10 times) the gain fac-
tor due to SR obtained in the same conditions. From this
point of view, the question of how noise affects the gain
factor for very weak LF signals, is important from both the-
oretical and practical standpoints. Though, the effect of noise
on VR was investigated numerically[5] and analytically[8],
but no scaling law was found which relates the gain factor
for a weak signal and the noise strength.

Here we present the results of theoretical and experimen-
tal investigations of the effect of additive noise on VR in
VCSEL operating in the regime of the polarization bistabil-
ity. Our theoretical consideration is based on the application
of the effective potential to the theoretical results developed

earlier for the study of SR. Due to the difference in time
scales associated with LF and HF modulations, a rapidly
oscillating double-well potential can be transformed into an
effective potential with a parametric dependence on the am-
plitude and frequency of the HF modulation. Making use of
such an approach, we find analytically a scaling law which
relates the gain factor for the LF signal due to VR with the
strength of the added noise, which is in a good agreement
with the numerical and experimental results for weak LF
signals.

Theoretically, the dynamics of the polarization switchings
induced by noise and a deterministic modulation in the
VCSEL can be described in the framework of a Langevin
equation with a two-well potential[9–11]. Therefore, we
consider the phenomenon of VR in the presence of noise
using the model of an overdamped bistable oscillator. First,
we consider the problem without noise. For sake of clarity,
we reproduce here some of the results presented in[5,7]. The
system is being excited by the LF signalfstd with a charac-
teristic time tL and the amplitudeAL, where fstd can be a
periodic or aperiodic function, and by a HF modulation with
an amplitudeAH and a frequencyVH, such thatVHtL@1. In
this case, the dynamics is governed by the equation

]x/]t = − V8sxd + ALfstd + AH sinVHt, s1d

whereV8sxd is the derivative with respect tox of a bistable
potential functionVsxd=−ax2/2+bx4/4, with local minima
xm

± = ±Îa /b and barrier heightDV0=a2/4b, wherea andb
are positive numbers. The dynamics is ruled by two time
scales which are determined by LF and HF signals, respec-
tively. Therefore we look for the solution as follows(the
procedure is the same of Ref.[2]). We definexstd=ystd
+fAH / sVH

2 +h2d1/2gcosVHt, whereystd denotes the slow part
of the solution andh is a parameter. Substituting it into(1)
and averaging over the periodTH=2p /VH, we obtain the
following equation which governs a slow dynamics of the
system:

dY/dt = as1 − j2dY − bY3 + ALFstd, s2d

where Y=kystdlTH
, Fstd=kfstdlTH

, where kzstdlTH
=s1/THde0

THzsTddT. We introduce here a normalized param-*Electronic address: vnc@dragon.bas-net.by
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eter j=AH /m, wherem is a switching threshold which de-
pends on both the amplitude and the frequency

m = Î2aVH
2 /3b + 4a3/27b. s3d

In this case, the effective potentialVef fsxd takes the form

Vef fsx,jd = − as1 − j2dx2/2 + bx4/4. s4d

The sign near the quadratic term determines the character of
Vef fsx,jd. For j=1 we have a bifurcation point where the
transition from bistability to monostability occurs as the am-
plitude of the HF modulation increases[5,7] from which in
the limit VH→0 the expression form (3) can be obtained.
Obviously after averaging, the parameters of the potential
such as the minima locationxm

± and the barrier heightDV
depend onj

xm
± = ± Îas1 − j2d/b, DV = a2s1 − j2d2/4b. s5d

Now, we can study the effect of noise on the system response
to the LF signalFstd=sinsVLtd. In this case the equation
reads

dY/dt = as1 − j2dY − bY3 + AL sinsVLtd + zstd, s6d

where zstd is a white, Gaussian noise withkzstdzst8dl
=2Ddst− t8d and meankzstdl=0. We explicitly assume here
that the averaging does not change the character of noise
when we add the noise term into the averaged equation.
Equation(6) is the standard statement of the problem used
for studying the phenomenon of SR. We can use therefore
the analytical results obtained earlier, taking into account the
dependence of the potential parameters onj. In particular,
we consider here the well known result of the spectral am-
plification in SR. We define the gain factorG here asG
=RL /R0, whereRL is the response of the system at the fre-
quency VL to an additional stochastic or HF modulation,
whereasR0 is the response in the linear approximation with-
out any additional force. In this caseR0=AL /ÎVL+4a2 or for
VL!2a the responseR0 reduces toR0>AL /2a. As shown in
the limit xmAL!D, the responseRL can be evaluated from
the following expression[see Eq.(3.7a) from [12]]:

RL =
ALxm

2

D

2rk

s4rk
2 + VL

2d1/2, s7d

where

rk =
as1 − j2d

Î2p
expS−

a2s1 − j2d2

4bD
D s8d

is the Kramers rate. Asxm (5) andrk (8) explicitly depend on
j, we can analyze the effect of the additional HF modulation.
Substitutingxm and rk into Eq. (7), we obtain finally an ex-
pression forGVR:

GVR=

2Î2a3s1 − j2d2expS−
a2s1 − j2d2

4bD
D

bDÎ2a2s1 − j2d2expS−
a2s1 − j2d2

2bD
D + VL

2p2

.

s9d

Figure 1 showsGVR as a function ofj for different values
of D. One can see the strong diminution of the gain factor
GVR, the broadening of the response curve and the shift of the
maxima to the lower values ofj asD increases. Obviously,
the expression(9) can be used for the evaluation ofGVR only
for j,1 since forjù1 the bistable operation is lost. From
the expression forGVR (9), in the limit VL→0 one can find
that the maximumGVR

max approximately obeys the law

GVR
max> 2Î2ab−1/2ÎlnsVL

−2DdD−1/2. s10d

In Fig. 2(a) we compareGVR
max as a function ofD plotted

using Eq. (10) with values of GVR
max obtained numerically

from Eq. (9). One can note a good agreement between nu-
merical and analytical results.

In order to check our predictions, we numerically inte-
grated the following equation with the same meaning of all
parameters as in analytical study:

dx/dt = 4sx − x3d + AL sinVLt + AH sinVHt + zstd. s11d

In what follows, we use the normalized amplitudes« andj
defined as«=AL /mL andj=AH /mH wheremL andmH are the
switching thresholds at the frequenciesVL and VH, respec-
tively. For a quantitative characterization of VR we used the
gain factor GVR defined asGVR=RLsVLd /R0sVLd, where
RLsVLd andR0sVLd are the responses at the low frequency in
the presence and the absence of the HF modulation, respec-
tively, which were evaluated from the spectra of the Fourier

FIG. 1. (Color online) Analytics. Gain factorGVR versusj for
different values of the noise strengthD=0.003(1), 0.009(2), 0.025
(3), 0.05 (4), 0.08 (5), and 0.12(6) sVL /2p=0.0001d.

FIG. 2. (Color online) (a) GVR
max vs D for different values of

VL=10−3 (1), 10−4 (2), and 10−5 (3); (b) m vs VH (see text). Solid
lines: analytics. Asterisks: numerics.
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transformed time series. A forward Euler algorithm with a
fixed step of 0.00132p /VH was used in the simulation.

First, in the absence of noise, we compare analytical ap-
proximation for m (3) as a function ofVH with numerical
results depicted in Fig. 2(b), showing a good agreement. Fig-
ure 3 shows the effect of noise on the gain factorGVR for a
weak LF signals«=0.0162d. A strong degradation ofGVR as
a noise strengthD increases fromD=0.0001(curve 1) up to
D=0.25 (curve 6) is observed. In particular,GVR

max decreases
by about 7 times in this case. The increase of the noise level
leads to the broadening of the response curve and to the shift
of the optimal value ofjopt corresponding toGVR

max. This pic-
ture is a good qualitative agreement with Fig. 1. For a certain
value ofD, which depends on«, the effect of the excitation
of VR completely disappears. This value ofD corresponds to
the optimal noise intensityD* for the given amplitude« in a
conventionalSR phenomenon[12]. This means that for all
D,D* the gain factor for a weak LF signal due to VR will
be larger than in conventional SR. ForD.D* the additional
HF modulation worsensGVR for a weak LF signal.

In Fig. 4, GVR
max as a function ofD is shown for different

values of«. One can distinguish two regions in the figure.
First, in a certain range ofD, the valueGVR

max practically does
not depend onD. This range decreases when lowering«,

there,GVR
max tends to a limiting value asD decreases. These

limiting values can be evaluated from the simple relation-
ship:

G0 = 6«−1, s12d

which can be obtained analytically in the limit of weak«
from Eq. (1) in the adiabatic regime of the two-frequency
excitation in the absence of noise. In Fig. 4, the different
G0’s are represented by horizontal lines. For a strong enough
level of noise, the decreasing ofGVR

max in the log-log scale
linearly depends onD (shown by inclined lines). A fitting of
the numerical data relatesGVR

max andD asGVR
max,D−g, where

g depends on«. The fit givesg<0.46, 0.45, 0.38 for«
>0.0162, 0.0325, 0.065, respectively. One can note that the
value of g<0.46 for a weak LF signal is in a good agree-
ment with the analytical prediction[shown in Fig. 4 by a
dashed line using Eq.(1)]. The critical valueDc, from which
noise affects VR leading to its degradation, can be evaluated
from the expression

Dc > s2/3d3/2sa2/bd«3/2, s13d

shown in Fig. 4 by triangles. This expression was obtained
from the conditionxmAL=D in the same assumptions as Eq.
(12). One can note thatDc approximately corresponds to the
crossing points of horizontal and inclined lines in Fig. 4.

The experimental investigations performed in VCSEL
have confirmed our main theoretical findings. The experi-
mental setup was the same as in[6]. We studied VR in the
laser intensity after polarization selection when two sinu-
soidal signals at the frequenciesVL=1 kHz and VH
=100 kHz with amplitudesAL and AH, respectively, were
applied to the injection current. Both frequencies are much
lower than the cutoff frequency of the laser polarization
switching bandwidth. In what follows we use the normalized
amplitudes of the LF and HF signals defined as«=AL /mL
and j=AH /mH, wheremL and mH are the switching thresh-
olds at the frequenciesVL andVH, respectively. The normal-
ized amplitude of the HF signalj is the control parameter.
Along with two periodic signals, noise with the different
amplitudessN was added to the injection current of the laser.
In what follows we define the noise strengthD=sN

2. The
injection current was chosen in order that the laser operates
in the regime of polarization bistability, where switching be-
tween two states could be induced by applying the determin-
istic modulation and noise. The laser responses were de-
tected with a fast photodetector and recorded by a digital
oscilloscope coupled with a computer to store and process
the data. Every time series contained 53104 sampling points
with 20 periods of the LF signal. Each point ofGVR was
obtained by averaging over 10 independent time series. As
we already discussed, we expect that additive noise has a
strong effect on VR leading to its degradation, when it added
to the input signal, whileGVR

max obeys a simple scaling law.
We present the results of an experimental evidence of this
scaling law. The experimentally measured gain factorGVR
for a weak LF signals«=0.028d versusj is shown in Fig. 5
for different values of the added noise intensity. One can see
that an addition of noise results in a diminution of the gain,
the shift of its maximum and broadening the response curve

FIG. 3. (Color online) Numerics. The gain factorGVR versusj
for different values of the noise intensityD=0.0001(1), 0.0026(2),
0.011 (3), 0.048 (4), 0.15 (5), and 0.25 (6). VL /2p=0.0001;
VH /2p=0.1: «=0.0162.

FIG. 4. (Color online) Numerics.GVR
max versusD shown for dif-

ferent values of«. A dashed line is plotted using Eq.(10).
(VL /2p=0.0001;VH /2p=0.01.)
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as a noise intensityD increases. These experimentally ob-
served features are in a good qualitative agreement with the
numerical and analytical results shown in Fig. 3 and Fig. 1,
respectively. The experimentally measuredGVR

max versusD for
three different values of the amplitude of the LF signal is
shown in Fig. 6. In agreement with the results of the numeri-
cal simulation presented in Fig. 4, one can note that there
exists a range of the noise intensity whereGVR

max practically
does not depend onD (Fig. 6, curve 3). These values ofGVR

max

are also in good agreement with the theoretical prediction
(12) shown by horizontal lines. In the region ofD where
GVR

max quickly decreases asD increases, the fitting of the ex-
perimental data yields the scalingGVR

max,D−g, where g
<0.47, 0.34, 0.27 for«=0.028, 0.056, 0.168, respectively.
All values ofg agree with the results of the numerical simu-
lation. Moreover, the first value ofg is in a good agreement
with the value predicted analytically and shown by a dashed
line in Fig. 6. We can therefore conclude that the experimen-

tal results confirm theoretical predictions concerning the be-
havior ofGVR

max depending on the LF amplitude and the noise
strength.

To conclude, we have shown that the introduction of the
effective potential into the theoretical results developed for
the description of SR allows to study the effect of the addi-
tive noise on VR. We found analytically the scaling law re-
lating the gain factor and the noise strength which is in an
agreement with the numerical and experimental results. Our
results are very general and one can expect that they can be
applicable to bistable systems from different fields. On the
other hand, one can expect also that this scaling law can be
observed in a broad class of nonautonomous systems dis-
playing period-doubling bifurcations, since the normal form
equation describing the essential dynamics on a low-
dimensional manifold coincides with the equation for an
overdamped oscillator with parametrically dependent poten-
tial [13].
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FIG. 5. (Color online) Experiment. The gain factorG versus the
normalized amplitudej for different values of the noise levelsN

=7 (1), 14 (2), 30 (3), 65 (4), 110 (5), and 250(6) smVrmsd. («
=0.028.)

FIG. 6. (Color online) Experiment.GVR
max versusD for different

values of«. A dashed line is plotted using Eq.(10) with rescaledD.
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